Back to blog

Reducing the Cost of Data Collection

Maryia Stsiopkina

2022-06-22

Share

Not only do businesses aim to leverage public data by collecting it and performing its analysis, but they also want to do so in the most cost-effective way. Easier said than done, right? 

In this article, we’ll discuss the key factors influencing data acquisition costs, the advantages and disadvantages of in-house scraping solutions, and some ways to reduce data acquisition expenses. 

Factors that influence the cost of data collection

When it comes to data acquisition costs, there are a couple of factors that affect them. Let’s take a closer look at each of them. 

Complexity of a target

Some targets tend to implement bot-detection mechanisms to prevent their content from being scraped. The targeted sources' precautions will define the technologies needed to access and retrieve the public data.

Dynamic targets

The largest portion of websites render their content with the help of JavaScript. While this programming language makes a web page dynamic and easier to interact with, it also constitutes an obstacle for web scrapers. 

In the course of regular web scraping, not involving executing JavaScript, a scraper sends an HTTP request to a server and gets some HTML content in the response. However, in some cases, this initial response may not contain any useful data, as the site may rely on loading additional bits of data while executing JavaScript on the browser that has received the initial response. 

One of the most common ways to extract data loaded via JavaScript is to run a headless browser. It requires extra computing resources and maintenance. This, in turn, necessitates having more servers, especially if it involves large-scale data gathering. Lastly, you also need sufficient human resources to uphold the entire infrastructure. 

Server restrictions

Server restrictions mainly take the form of a header check, CAPTCHA, and IP bans.

Header check

HTTP headers are one of the first things websites look at while trying to determine whether a real user or a scraper is accessing their website. The main purpose of HTTP headers is to facilitate the further transmission of the request details between the client (internet browser) and server (website). 

There are various HTTP headers, and they contain information about the client and the server involved in the request. For example, the language preference (HTTP header Accept-Language), recommendations regarding what compression algorithm should be used to handle the request (HTTP header Accept-Encoding), browser and operating system (HTTP header User-Agent), etc. 

Even though a single header may not be very unique as plenty of people use the same browser and operating system version, the combination of all headers and their values are likely to be unique for a particular browser running on a specific machine. This combination of HTTP headers and cookies is called the client’s fingerprint. 

If a website finds the header set suspicious or lacking information, it may display an HTML document that contains false data or ban the requestor completely. 

That’s why it’s crucial to optimize the header and cookie fingerprint details transmitted in a request. This way, the chances of getting blocked while scraping will significantly decrease. 

CAPTCHA

CAPTCHA is yet another validation method used by websites that want to avoid being abused by malicious bots. At the same time, CAPTCHA is a serious challenge for the benevolent scraping bots that intend to gather public data for research or business purposes. CAPTCHA may be one of the responses that the targeted servers will throw at you if you fail the header check. 

CAPTCHAs come in various forms, but these days they mostly rely on image recognition. It complicates things for scrapers as they are less sophisticated than humans in visual information processing. 

Another common type of CAPTCHA is reCAPTCHA containing a single checkbox you need to click on to prove you’re not a bot. Seemingly simple action turns out to be quite tricky, as it’s not the checkmark that the test is looking at but the path that leads to it, including the mouse movements.

Lastly, the most recent type of reCAPTCHA doesn’t require any interaction. Instead, the test will look at a user’s history of interacting with web pages and overall behavior. Based on these indicators, in most cases, the system will be able to differentiate between a human and a bot. 

The best thing you can do is avoid triggering CAPTCHA altogether by sending the correct header information, randomizing the user agent, and setting up intervals between the requests. 

IP blocks

An IP block is the most radical measure web servers can take to ban suspicious agents from crawling through their content. If you fail to pass the CAPTCHA test, the odds are that you’ll receive an IP block shortly after it. 

It’s noteworthy that putting some additional effort into avoiding an IP block in the first place is a better tactic than dealing with the consequences once it’s already happened. Thus, you need two things to prevent your IP from being banned: an extensive proxy pool and a legit fingerprint. Both are pretty demanding regarding resources and maintenance, thus affecting the overall cost of public data gathering.   

Server restrictions you may face.

Technologies and tools

It follows from the previous part that you must develop technologies perfectly tailored to your targets to succeed in web scraping and avoid unnecessary hassle. 

If you’re considering building an in-house scraper, you should think about the entire infrastructure and dedicate resources to maintaining relevant hardware and software. The system may include the following elements:

Proxy servers

Proxies are irreplaceable helpers during every web scraping session. Depending on the complexity of the target, you may need Datacenter or Residential Proxies to help you access and fetch the required content. A well-developed proxy infrastructure comes from ethical sources, includes multitudes of unique IP addresses, offers country and city-level targeting, proxy rotation, unlimited concurrent sessions, and other features. 

Application programming interfaces (APIs)

Simply put, APIs are the middlemen between different software components that enable two-way communication between them. APIs are a crucial part of the digital ecosystem as they help developers save time and resources. 

APIs are being actively implemented in various IT fields, and web scraping is no exception. Scraper APIs are tools created for data scraping operations at a large scale.

In-house data collection: What you need to know

When deciding whether to invest in developing an in-house scraper or outsource it to another company, you should first consider what requirements your web scraper must comply with. These requirements will be defined by the scope of your data needs, the frequency and speed with which you expect your data to be retrieved, and the complexity of your targets. 

Advantages 

One of the advantages of an in-house scraper is that it is highly customizable. In other words, you can tailor it to the unique demands of your project. You’re in total control of the scraper, and it’s only up to you to decide how you want to build and maintain it. 

If web scraping and data gathering are at your business's core and you have sufficient experience and dedicated resources to invest in an in-house scraper, then it might be the best pick for you.  

Disadvantages 

Although in-house web data scraping may satisfy data acquisition needs pretty well in some cases and can also be affordable in terms of finances at the start, it has its drawbacks. 

As your data collecting needs may grow over time, you will need to procure a scraper infrastructure that can be easily scaled up. It will require enormous resource commitment. So if data extraction and web scraping are not the focus area of your business, it will be more reasonable to outsource scraping solutions.

How Scraper APIs can lower data acquisition costs

If you decide to stick to the latter after weighing the cons and pros of in-house scrapers and outsourced ones, you should consider using Scraper APIs for data harvesting. 

Here are the main features of Scraper APIs that make them almost undefeatable when it comes to public web data extraction:

  • Handling the most complex targets with the help of built-in JavaScript rendering functionality. 

  • Resistant to the bot detection responses, including CAPTCHAs, IP blocks, etc. 

  • Integrated proxy infrastructure and customizable results delivery to the cloud storage of your choice. 

  • An embedded auto-retry functionality will make sure that you get the results delivered successfully.

  • Structured and ready-to-use data in JSON will make data management and analysis easier while reducing data cleaning and normalization costs.

Full of useful features aimed at seamless data extraction, Scraper APIs are perfect helpers in large-scale data gathering from the most challenging targets. 

Wrapping up 

As you can see, the factors influencing the data collection costs are also the main technological challenges that scrapers face. To make the scraping process cost-effective, you must successfully utilize tools capable of handling your targets and all possible anti-scraping measures. Such public data-gathering solutions as Scraper APIs can be of great help here.

If it’s not only the reasonable costs and data quality that you value but also the scraping speed, check out this practical tutorial on how to make web scraping faster.

Frequently Asked Questions

How much does web scraping cost?

There’s no universal answer to this question since web scraping costs depend on many factors. Some of them are whether you perform it in-house or outsource it, the scale of your project, the complexity of the targets, and others.

How to calculate the cost of data collection?

Data collection costs are defined by the requirements you set for your project and the technologies used to handle your targets. Overall, if you decide to collect public data with in-house solutions, the final cost must be calculated based on the costs of proxy infrastructure, APIs involved in the process, computing resources, and others.

About the author

Maryia Stsiopkina

Junior Copywriter

Maryia Stsiopkina is a Junior Copywriter at Oxylabs. As her passion for writing was developing, she was writing either creepy detective stories or fairy tales for children at different points in time. Eventually, she found herself in the tech wonderland with numerous hidden corners to explore. In her spare time, she goes birdwatching with the binoculars (some people mistake it for stalking, which is why Maryia finds herself in an awkward situation sometimes), makes flower jewellery, and eats many pickles and green olives.

All information on Oxylabs Blog is provided on an "as is" basis and for informational purposes only. We make no representation and disclaim all liability with respect to your use of any information contained on Oxylabs Blog or any third-party websites that may be linked therein. Before engaging in scraping activities of any kind you should consult your legal advisors and carefully read the particular website's terms of service or receive a scraping license.

Related articles

Get the latest news from data gathering world

I’m interested

IN THIS ARTICLE


  • Factors that influence the cost of data collection

  • In-house data collection: What you need to know

  • How Scraper APIs can lower data acquisition costs

  • Wrapping up 

Scale up your business with Oxylabs®